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A THECRETICAL AND EXPERTMENTAL STUDY OF THE NONLINEAR
FLEXURAL VIBRATIONS OF THIN CIRCULAR RINGS

By Deavid A. Evensen
Langliey Research Center

SUMMARY

The nonlinear flexural vibrations of thin circular rings are analyzed by
assuming two vibration modes and then applying Galerkin's procedure on the
equations of motion. This procedure results in coupled nonlinear ordinary dif-
ferential equations with time as the independent variable. The applied loading
is taken to be harmonic in time, and approximate solutions to the equations are
obtained by the method of averaging. One such solution involves the vibration
of a single bending mode; a subsequent stability analysis shows that this
single-mode response is valid only for certain combinations of amplitude and
frequency. For example, when the driven mode exceeds a critical amplitude, non-
linear coupling causes its companion mode to respond and participate in the
motion. Approximate solutions are obtained for this coupled-mode case, and
their stability is examined. The steady-state response curves contain an
unusual "gap," where both the one- and two-mode solutions are unstable. These
results were confirmed on an analog computer, and nonsteady vibrations were
observed. in the gap region.

An experimental study of the problem was also conducted. Theory and
experiment both indicate a nonlinearity of the softening type and the appear-
ance of the companion mode. Measurements of the steady-state response are in
good agreement with the calculated values, and the experimentally determined
mode shapes agree with the form of the assumed deflection.

The analytical and experimental results exhibit several features that are
characteristic of nonlinear vibrations of axisymmetric systems in general and
of circular cylindrical shells in particular.

INTRCDUCTION

Current design of launch vehicles relies heavily on the use of thin-walled
cylindrical shells as the primary structure. During powered flight, these
cylindrical structures are often caused to vibrate to large amplitudes, in
response to their enviromment. This problem has given rise to a number of
theoretical studies of the nonlinear vibrations of thin cylindrical shells



(refs. 1 to 3). However, recent experimental results (ref. L) suggest that
such vibrations are still not fully understood. These studies prompted the
investigation of a simpler but related problem, namely, the nonlinear flexural

vibrations of a thin circular ring.

Flexural vibrations of circular rings were originally analyzed in 1871 by
Hoppe (ref. 5), who presented the linear vibration frequencies and mode shapes.
Shortly thereafter, Rayleigh (ref. 6) obtained similar results by using the
approximation that the midsurface of the ring was inextensional. Since that
time, the effects of midsurface extension, shear deformation, and rotary inertia

have been investigated (refs. 7 to 9).

The first study of the elastic, nonlinear flexural vibrations of rings
appears to be the 1959 work of Federhofer (ref. 10), who analyzed the free-
vibration problem. The same problem was examined by Shkenyev (ref. 11), who was
primarily concerned with the dynamic stability of rings, as were Goodier and
McIvor (ref. 12). No experiments on the nonlinear vibration of rings have been
reported in the literature, although linear vibrations have been studled exper-

imentally (refs. 13 and 14).

The purpose of the present work is to study the forced, nonlinear flexural
vibrations of thin circular rings. Only vibrations in the plane of the ring
are conslidered, and the stress-strain law (Hooke's Iaw) is assumed to be linear.
The nonlinearities examined here are geometric in nature and arise from the
nonlinear terms of the strain-displacement relations. The ring is assumed to
be of uniform rectangular cross section and to be relatively thin. With these
restrictions, a detailed theoretical and experimental study of the problem was

conducted.

Agreement between theory and experiment was generally very good. The cal-
culated response curves compare favorably with the experimental results, and
measurements of the actual vibration form confirm the choice of the mode shapes
used in the analysis. Both theory and experiment exhibit coupled vibrations
that involve a driven mode and its companlion mode. The results demonstrate
several features that are characteristic of nonlinear vibrations of axisym-
metric systems 1n general and of circular cylindrical shells in particular.

This research was conducted while the author was a graduate student at the
California Institute of Technology; the present report is a condensation of
reference 15.

SYMBOLS

The units used for the physical quantities defined in this paper are given
both in U.S. Customary Units and in the International System of Units (SI)
(ref. 16). Appendix A presents factors relating these two systems.




Ao(t)

An(t),Bn(t)

A(T):B(T)

amplitude and time-varying part of uniform contraction, in. (cm)
(see egs. (8) and (9))

generalized coordinates associated with cos %? and sin %%

modes, in. (cm) (see egs. (8) and (10))

slowly varying amplitudes, nondimensional

Ap(t),Bgp(t),Cg(t) experimental amplitudes

KO,§6 and 56,&6 steady-state values of amplitudes and phases, respectively

i,d

K,Q

Mes My My
N> Ny > Ny
n
P

Q(X:y,vt)

(see eqs. (F2))

ring length, in. (cm)

En>
bending stiffness, , 1n-1b (m-N)
12(1 - +2)

displacement, in. (cm) (see fig. 14)

Young's modulus, 1b/in® (N/m2)

base of Napierian logarithm

load per unit length applied to ring in experiment, 1b/in. (N/m)
magnitude of assumed loading, 1b/in. (N/m) (see eq. (13))
dimensionless force

ring thickness, in. (cm)

integers

Mathieu equation coefficients

spring constant of drive wire, 1b/in. (N/m)

resultant moments per unit length, in-1b/in. (m-N/m)
resultant forces per unit length, 1b/in. (N/m)

number of circumferential waves (n =2, 3, 4, . . .)

magnitude of load experimentally applied to ring, 1b (N)

radial load applied to cylinder



a(y,t)

u,v,w

Xy, Y52

€xys€xzs€yz
gc(T))gs(T)
AN

=eK2
H="5

radial load applied to ring

mean radius of ring, in. (cm)

fraction of half wavelength

time, sec

stability variable used in equations (D7)

displacement of a point on middle surface in axial, tangential,
and radial direction, respectively

coordinate in axial, circumferential, and radial direction,
respectively

Mathieu equation variables

percent critical damping in cos %g and sin %g mode,

respectively

amplitude of shaker displacement, in. (cm)

2
2
dimensionless nonlinearity parameter, (Eﬁﬁ)

corrected nonlinearity parameter (see eq. (29))

=)t 52)

direct strains

shear strains

nondimensional generallzed coordinate associated with cos %%

and sin %g- mode, respectively

nondimensional stabllity variables

Poisson's ratio




EC(T),ES(T) perturbation in response of cos %% and sin %% mode, respec-
tively (see egs. (D1) and (D2))
p mass density, 1b-sec?/in* (kg/m3)

Oxxs OyysOzz mnormal stresses, 1b/1in2 (N/m2)

shear stress, 1b/in2 (N/m2)

Oxy
T nondimensional time, wyt
®p,0p experimental phases

o(t),¥(T) slowly varying phases, nondimensional

X =Qr + ¢
Q nondimensional frequency, W fam
w vibration frequency, radians/sec
We linear frequency of cos %?; driven mode (see fig. 15)
1/2
. E n® (n2 - 1)2 h\2
wr, nth linear vibration frequency, 5 5 SY\R 5
PR (n + l) 12(1 -V )
radians/sec
. o 3 1/2
E (n2-1)" o
wM approximate vibration frequency, 5 \ﬁ P
oR? 12(1 - v2)
radians/sec
wg linear frequency of sin %g; companion mode (see fig. 15)
2 2
ve Laplacian operator, é-— + §-§
ax®  dy
Vh biharmonic operator, v2v2

o(e2) order €



Subscripts:
cr critical
max maximum

A dot over a quantity indicates differentiation with respect to time; a
bar over a quantity indicates an average value.

THEORY

In this report, the nonlinear vibrations of a thin ring are analyzed by
approximate techniques. The governing equations of motion are presented first,
along with the associated boundary conditions. These equations are then reduced
to ordinary differential equations by applying Galerkin's procedure. Two
coupled nonlinear equations result, and approximate solutions to them are
obtalined by the method of averaging. The stability of these solutions is exam-
ined, and improvements in the analysis are discussed.

Equations of Motion

The nonlinear equations of motion of a thin ring can be written in the form
(see appendix B)

oN 2
y v
> ohat,c, (1a)
> 1 \/o% | w Y 3 ( Bw) 2w
D= + = |(LE + L)+ L - S vy L)+ ph 2 = g(y,t) (1b)
<ay2 R2><ay2 Rz) R "oy \Y oy, 7 a2
where the circumferential force is given by
Ny=mlél+3+i<§w-2 (2)
oy R 2\oy

and the radial displacement w, the tangen-
tial displacement v, and the applied load
a are taken to be functions of only the
circumferential coordinate y and the time
t. (See fig. 1.) These results are
obtained by a specialization of the analo-
gous equations for thin cylindrical shells.

Boundary conditions.- Since the ring
is circular, the displacements must satisfy
the following continuity requirements:

Figure 1.- Ring geometry and coordinate system.



w(y,t) = w(y + 2nR,t)

(3a)
ayi(y’ ) = B_y—(y + E“RJt) (1 =1, 2)

v(y,t) = v(y + 2nR,t)

(3b)
—g—;(y,t) = é;(y + 21R,t)

in addition to the equations of motion. From a physical standpoint, these
boundary conditions insure that the displacements, slope, and other related
variables are continuous in the circumferential direction.

Simplified equations of motion.- Previous work (ref. 15) has shown that for
flexural vibrations, equations (1) can be simplified considerably without losing
the essential features of the problem. This simplification 1s accomplished by

(1) assuming that the midsurface circumferential strain is zero
(2) neglecting the effect of tangential inertia

The first of these conditions requires

2
yy|,o0 = %% + % + %(%;) =0 (4)

where the nonlinear strain-displacement relations (appendix B) have been used.
Similarly, neglecting tangential inertia in equation (1a) results in

%:o (5)

oy

Combining equations (2), (4), and (5) gives Ny = O. Using this result in
equation (1b) yields the simplified equation of motion for w:

>° 32w 3%
D<§;§ + )(@ye + §§> + ph SZE = q(y,t) (6)

Note that the continulty conditions on w and v are not altered by the
preceding discussion.

With these simplifications, the remaining problem is to solve equation (6)
subject to the continuity and inextensionality constraints. Since the latter
requirement (eq. (4)) is nonlinear and obviates exact solutions to equation (6),
it is necessary to resort to approximate techniques.



Nonlinear Ordinary Differential Equations
for Vibration of a Thin Circular Ring

Approximate solutions to equation (6) can be obtained by assuming the shape
of the deflection in space. This approach is commonly used in nonlinear vibra-
tions of structures (cf. refs. 17 to 19) and reduces the problem to one
involving nonlinear ordinary differential equations in +t.

Choice of deflection modes.- The most general radial deflection compatible
with the continuity requirements is

w(y,t) = Z:O E\n(t)cos =L+ By(t)sin %1] (7)

where Ap(t) and By(t) are periodic in time. This case has been analyzed in
detall in reference 15, but the majority of the results can be obtained by using
the following two-mode approximation:

w(y,t) = Ap(t)cos -’;l + Bp(t)sin EﬁZ + Ag(t) (8)

Here cos %g and sin %? are the linear vibration modes of the ring; and since

only flexural motlons are considered, equation (8) is restricted to cases where
n22. The n =0 mode is (by itself) an axisymmetric motion involving
stretching of the midsurface, and the n =1 modes correspond to displacement
of the ring as a rigid body. The A, term in equation (8) is related to Ap,

and Bp by the inextensionality constraint.

Determination of Ag(t) in terms of Ap(t) and B, (t).- Solving equa-
tion (4) for ov/dy and substituting for w from equation (8) gives

& _ _w_1fwY
ay R 2 ay
AT 2
= - _2&_1 - E“I}ne(t) + Bng(tﬂ + Terms periodic in ¥y

To satisfy the constraint v(y,t) = v(y + 2xR,t), the terms that depend solely
on time must be equated to zero. Thilis procedure yields

ao(8) = - B fan(e) + 22() (9)



and equation (8) can then be rewritten as

w(y,t) = An(t)cos ’-1% + Bp(t)sin %’- - Iﬁ;[qne(t) + Bne(t):] (10)

for the assumed radial displacement. This expression is compatible with the
continuity and inextensionality constraints and can be used with Galerkin's
procedure to satisfy approximately the simplified equation of motion for w.

Application of the Galerkin method.~ To apply Galerkin's procedure, equa-
tion (10) is substituted for w in equatlon (6). The resulting expression is
then multiplied by a weighting function associated with Ap(t) and integrated
with respect to y from O to 2xR. This procedure yields an ordinary differ-
ential equation involving primarily Ap(t). An equation for By(t) is obtained

in a similar fashion; both equations are coupled in the nonlinear terms. The
weighting functions used are

%X; = cos %g - nZin (11a)
and

%%; = sin %g - niﬁn (11v)
respectively.

Carrying out the operations just indicated and then nondimensionalizing
the results ylelds the followlng coupled equations:

2 2 2 2 2
ast at et a=t ag a=C at
20 + EBC __C + CC + gc CC 2C + 3 c + QS > + ——d_ 8 = Gn cos QT
ar dr ar T ar T
(12a)
2 2 2 2 2
d§S+2B dc—s+§ +€§sgd§s+d§s .t dgc+&_ 6
-2 S 4 S 2 |78 ;.2 ar ¢ .2 ar
dr T ar ar
(12v)

where the dimensionless variables are

An Bn
QC = _h—" CS = T
T = (L)M-t 0 = ﬁ



2
_ nZh _ Fn
e = B2 Gp = —5
nRph Wy

and

(1) for simplicity, the loading has been taken to be

F
=B A
a(y,t) = —& €08 |- cos wt (13)

(2) two minor nonlinear terms have been discarded

(3) modal damping terms have been inserted to study the first-order effects
of small viscous damping

Although these results were derived by a Galerkin procedure, they can also
be obtained by the Rayleigh-Ritz method. In general, these two approximate
techniques are not equivalent; they can be made to coincide, however, by the
proper choice of weighting functions (ref. 20). It was for this reason that
the weighting functions BW/BAn and BW/BBn were used to obtain equations (12).

Approximate Solutions to Nonlinear Equsations

The previous section indicated the manner in which the equations of motion
are reduced to ordinary nonlinear differential equations. These equations still
cannot be solved exactly, but approximate solutions to them can be obtained by
the "method of averaging." (For a discussion of this technique, see ref. 21,

ch. V.)

Vibrations involving a single bending mode <cos %g) are considered first,

and nonlinear single-mode response curves are presented. When the stability of
the single-mode solution 1s examined, the vibrations are found to be stable for
only certain combinations of amplitude and frequency; this result makes it
necessary to examine vibrations where both cos %g and sin %% rarticipate in
the motion. The method of averaging 1s used to obtain approximate solutions
for this two-mode case and also to examine their stability.

Response of a single bending mode.- Inspection of equations (12) reveals
that possible solutions are (g (v) =0 and (.(t) # O, where the latter

satisfies

2 o) 2
ast at et a=t at

C 4+ 2B, =% + b, + —| S 4+ |=%] | = G, cos Qr (1)
ar? Cdr ¢ 2 ¢ g2 \ar "

10



To obtain approximeste solutions to equation (14%) by the method of averaging, let
to(r) = A(r)eos[ar + o(7)] (15)

where A and ¢ are presumed to be slowly varying functions of T. When this
expression for {, is substituted into equation (14) and the appropriate aver-

ages are carried out, two equations result (see appendix C).

_ 255
(1 - 02)F - E%-A—- = Gy cos B (16a)
-28,0A = Gy sin @ (16b)

Here A and ©® are average values (over one period) of A(r) and o(r).
Squaring and adding equations (16) results in one egquation involving X&:

o
25
[(1 - 92>K - thAJ + 4B, 2a"A" = an (17)

For given values of Gy, €, Bq, and {, equation (17) can be used to compute

B. Then equation (16b) can be solved for ®, and the approximate solution to
equations (12) becomes

tolr) = A cos(r + @) (18a)
E (7)) =0 (18b)

for vibrations where only one bending mode (cos %g) responds. A typical reso-
nance curve is shown in figure 2, which demonstrates the nonlinearity of the
softening type.

The case of free vibrations may be obtained by putting G, and B, equal
to zero in the preceding results. Equations (16) then yield

Q=1 - %‘ + ofe?) (19)

which is the so~called "backbone curve" for free nonlinear vibrations. This
curve is illustrated in figure 3 for various values of €.

Stability of the one-mode response.- The stability of the preceding solu-
tion was investigated by perturbing §.(7) and { (7). A study of the
resulting Mathieu equations indicates that within order =2

11



30

30 r
Computed (eq. (16)}
o Analog results
25
e=10
20+
<
E £=5x10"
= =R
: £
= kS
1= )
< é e=10
B 10+
o
2
5 —
0 __,\,__L__,[_,, [ I3 S s L n 3
.96 .98 1.00 1.02 1.04 % % : L0
Frequency ratio, Q Frequency ratio, Q
Figure 2.- Typical single-mode response. Driven mode, cos rk—y— Figure 3.- Backbone curves for various valLZJes of &
2
£ =42%x10% pc = 2% 107%; 6, = 0.10. Nonlinearity parameter, € = <D§D> .

(1) perturbations of §c are unstable within the area bounded by

-2 2
SR ca<1-

1-73 8

(2) perturbations of (g are unstable within the region

) —2
1-8 <co<1+ A
8 8
(3) both types of perturbations are also unstable in narrow regions near
1 1 1
='§:'5‘)K: ° o

Detalls of the stability calculations are given in appendix D, along with
an interpretation of the stability boundaries. The results of the stability
analysis (for the vibration of a single mode) are summarized in figure L. In
one region, the solution is unstable with respect to perturbations of e, and

12



Jumps occur in the response. In an
adjacent area, perturbations of g are

unstable, and the companion mode begins
to vibrate; this case of coupled vibra-
tions is analyzed in the following
section.

Response of the self-coupled bending
modes.~ When C (1) and €e.(T) both

osclllate, thelr coupled vibrations are
governed by equations (12). As in the
one-mode case, the method of averaging is
employed to obtaln approximate solutiomns.
To use this method, let

GRED) A(T)COS[@T + Q(Tﬂ
ts(T) B(T)sin[pT + W(TH

where A, B, ¢, and V¥ are presumed to
to be slowly varying functions of r.

(20)

Substituting the expressions for (.
and {, from equations (20) into equa-

tions (12) and applying the method of
aversging gives

(1 - 02F - 20x & _ Eﬂ[§2K2 + % oa° 4@ _

dr 4
+ QB2<1 - = cos 25)%%} = G, cos @

Amplitude, A

30

25

20

15

10

_/V\

Driven mode
YA is unstable

in this r

Stable response
in this region

OB

2sin 2A - 7? cos é&

(1 - 02)% - 208 91 - SE[}QQKQCOS oA + 9B° + QKQ(

n

Companion mode is
unstable in this

egion Q-1 LEAT
8
Effect of damping
Stable response
in this region
| i - 1
98 1.00 1.02 104
Frequency ratio, @
Figure 4.- Stability diagram for single-mode response.
~ 9B 4B, .=
2A - — — sin 2A
2 dar
(21a)
a8
ar
(21b)
1 -2 cos 25>Q2
2 dr
(21c)

13



o0 &8 4 28,08 - $B(0%K%sin oA - BB
ar b 2 dr

QA ~ gA )
+ 98 oos A 44 naa®)-o 2
2 0% L Er dT) (214)

where A(T), B(7), &(t), and V¥(r) have been replaced by their average
values over one cycle and are denoted by A&, B, 9, and V. The average

phase difference A is

A=V -0 (22)

For steady-state vibrations, the average values A § _; and V are
all constant; in thils case, their time derivatives (dA/dT, dB/ar, ete.) are all

zero, and equations (21) reduce to

— 27— — — —
(l - QE)A - E%TA(Ag - B2cos 2&) = Gy cos @ (23a)
— 25 - -
-2B0A - ei A 3260 oA = Gp sin ® (2%p)
(l - 92)5 - €i?§(§2 - R2cos 25) =0 (23c)

sin 2A = 0 (23d)

Equations (23) may be solved simultaneously for A, B, &, and V¥, and the
approximate solution to equations (12) then becomes

Eo(T) = A cos(ar + ) (2ka)

ts(t) =B sin(Qr + ¥) (2kDb)

Details of the_calculations are_given in appendix E. Response curves of the
variation of A with Q and B with § are shown in figure 5, where the

particular values

Gp = 0.1 (Force = Gy cos QT)

Bo = Bs = 2 X 107 (Viscous damping)

1k



and

2
n2h L
e =\x/) = 4.2 x 107% (Norilinearity parameter)
were used..

A surprising feature of the two-mode response was the appearance of a
"gap," or discontinuity in the solutlon. Sl:ightly to the left of the resonance
peak in figure 5, the approximate solutions ifor Cc and (g5 break down. The
results of a subsequent stability analysis slhiowed that the gap in the response
coincides with a narrow region in which both the one-mode solution (egs. (18))
and the two-mode solution (egs. (24)) are unstable. The experiments suggest
that a "beating" response exists in
this area, with the ring vibrating
first in one mode, then in two modes, 15
then back to one, and so forth. {

Analog-computer studies (dis-
cussed in a subsequent section) veri- 1o
fied the calculated response curves,
and nonsteady vibrations were found to
occur in the gap region. Similar
responses involving gaps have been --— Computed (eq. (23))
observed in the case of fuel sloshing ©  Analog results 3-0
and in other nonlinear problems. (See AJZ
refs. 22 and 23.) b ety -
0 .96 .98 1.00 102 1.04
Another curious result demon- Frequency ratio, &
strated in figure 5 is that in some

Amplitude, B

. . ny
. I ¢ . (a) Companion mode, sin &~
cases the companion mode (81n Tg’ which P R

is not driven by the forcing function) Br

can vibrate to larger amplitudes than

10 -

this type occur for O < 1 and were \k‘ /
detected experimentally. ; \
It will also be noted that in the 5p \ |
two-mode case the amplitude of the \’
driven mode is considerably reduced Y
v [} i [} N 1 | "
.96 98

the driven mode (cos %g). Responses of

Amplitude, A

from what it would be if sin =L did = ,
R 0 1.00 102 .04
not vibrate. A comparison of the Frequency ratio,
driven-mode response for both cases
(one mode and two modes) is shown in ) n
X (b} Driven mode, cos =
figure 6. R

Figure 5.- Typical coupled-mode response. € = 4.2 X 10‘4-,
Be = Bs = 2 % 1073; G, = 0.10.

15



Finally, both figures 5 and 6 show that the two-mode response 1s almost
linear, at least in those areas where the vibrations are stable.

Stabllity of the coupled-mode riesponse.- As for the one-mode case, the sta-
bility of the coupled-mode vibratioris can be found by perturbing the steady-
state response. The resulting analyrsis shows that within order €2 real non-
zero values of B do not exist for

-2

Qa>1 + A

8

and the two-mode solution is unstable for

_ 2.58632

2 <1
8

These results are presented in figure 7, and the corresponding stability cal-
culations are outlined in appendixk F.

A comparison of the preceding results with the results for the unstable
regions given previously shows tlhat the one-mode and the two-mode solutions are
both unstable in a narrow region given by

30 F
——~— Single-mode riesponse
—— Coupled-mode response
——— - Stability boundaries
2%+ \
> \\\ s ( Two-mode response \
W is stable in this region
\\
ﬂ\
L \ L —
20 0\ 20 Q=1_2.385A2
\\\ VA 8
i< \ v ' :
n A VA Companion modz
= B D \ | _ does not respon
= 15 \ ‘A < B Q- er’ in this region
£ e g o x
3
E
< 10 F
ffect of dampi
Two-mode response D Effec mpln\g
is unstable in this -
5F region
/%/ \
1 1 1 L J — YN NN
0 Ne .96 .98 1.00 1.02 1.04 0 aa .96 .98 1.00 1.02 1.04
Frequency ratio, Q Frequency ratio, Q
Figure 6.~ Comparison of driven-mode response for one mode and Figure 7.- Stability diagram for coupled-mode response.

two modes. € = 4.2 X 10°4; B = Bs = 2 x 103; 6, = 0.10.
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As noted previously, this region coincides with the gap in the two-mode
response. The gap in the solution is apparently caused when the assumption of
slowly varying amplitudes and phases inherent in the theory no longer applies
to the actual motions of the ring.

This discussion concludes the one- and two-mode analysis in this report.
The calculations can be extended to accoumt for the effect of tangential inertia
and additional nonlinear terms which have been previously neglected. The gen-
eral case, involving an infinite number of bending modes, has also been ana-
lyzed. (See ref. 15.) These investigations indicate that the basic features
of the vibrations are adequately given by the one- and two-mode study Just pre-
sented. The results of the more refined approaches are briefly outlined in the
following section; details of the calculations may be found in reference 15.

Tmprovements in the Analysis

Throughout the present study, many simplifying approximations have been
used.. In order to determine when these approximations are valld and when they
break down, it is necessary to consider some refinements in the analysis. These
refinements yield significant improvements in the theory and bring it in closer
agreement with the experiments.

Discussion of tangential inertia and other effects.- Since the effect of
tangential inertia has been neglected, equation (6) yields a slightly inaccu-
rate result for the linear vibration frequency. Including the tangential
inertia term (eq. (la)) corrects this discrepancy, and repeating the analysis
gives results in the form of equations (16) and (19), where @ is replaced by

w _ _ Freguency of vibration
@1, Linear vibration frequency

2 1
E (n2n+ l><% * 8n2>€ (25)

In other words, the form of the resulis is unchanged, but the parameters  and
€ are altered to account for the tangential inertia.

and € 1is replaced by

Other small corrections, such as those due to shear deformation, are gen-
erally unimportant if the ring is sufficiently thin. For instance, Buckens
(ref. 8) has shown that shear deformation and rotary inertia may be neglected if

12«
3
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This result 1s in agreement with the analogous result for beams - namely, that

shear effects can be neglected if the (depth/length)2 ratio is much less than
unity.

Similarly, the effect of extens:ion of the midsurface of the ring is usually
unimportant for bending vibrations o1’ thin rings. This result is well estab-
lished for linear vibrations (see ref’s. 6, 8, and 12) and carries over in the
nonlinear case as well (see ref. 15 in this regard).

Corrections for additional nonlinearities.- The preceding corrections are
all relatively minor, and their influence is fairly well predicted on the basis
of linear vibrations. A major improvement in the nonlinear analysis can be

obtained when additional nonlinear teims are included in the strain-displacement
relations. Up to this polnt, the calculations have all employed the usual non-

linear expression for the midplane ciicumferential strain, namely,

2
eyl = oV LW, l(%) (268)

which is commonly used in nonlinear shell studies (e.g., refs. 1 to 4). How-
ever, equation (26a) is an approximation to the more complete strain-displacement

relation (ref. 2k)
W ov |
+<_+__> (26b)

When the deflection w(y,t) 1is assumed in the form (eq. (8))

Y lz=0

€

Y
+
|2
+
-
=
¢
!
i<
SN——

w(y,t) = Apn(t)cos %g + Bp(t)sin %g + Ag(t)

and equation (26a) is used in the inextensionality condition, A (t) is found
to be (eq. (9))

Bolt) = - Eofar(e) + m,2(¢)

Then the deflection is (eq. (10))

w(y,t) = Ap(t)cos -an + Bp(t)sin PRX - {Li;&xng(t) + Bne(t)]

and the coefficient ne/hR eventually becomes the nonlinearity parameter

2
€ = <E§E> . Thus, the coefficlent of [éne(t) + Bng(ti] in the preceding
expression for w influences all the previous results (e.g., the response

curves, the backbone curve, and stability boundaries) by means of «¢.
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In a similar fashion, when the more exact equation (26b) is used in the
inextensionality condition, a more accurate expression for Ag(t) results
(see ref. 15)

Ao(t) = - Eg(l - ;%)2[§n2(t) + Bng(ti] + Terms of order (%?)3, (%?)5 (27)

If the higher order terms are neglected, the improved version of the deflection
then becomes

2
w(y,t) = Ap(t)cos %? + Bp(t)sin %% - E;(l - iz) [AnQ(t) + Bne(tﬂ (28)

Since this expression for w has exactly the same form as the one which was
previously used (eq. (10)), the analytical results are altered only through the

new coefficient of l}nQ(t) + Bng(tﬂ . That is, the results of the previous
calculations can be modified to account for the additional nonlinearities by

2
replacing € = <E§E> by

2
nzh 1 4
R ne
This correction can be combined with the one which accounts for tangential-
inertia effects by first defining a corrected nonlinearity parameter eo

2 b
cc = (ﬁ?)(l N é%?)(l ; ;1§> c (29)

Then all the previous analytical results (response curves, etc.) may be cor-
rected for both the additional nonlinearities and tangential inertia by
replacing © by wjo; and e by the expression for ec (eq. (29)). The
corrections are most noticeable for low values of n, with the effect of the
additional nonlinearities predominating. For example, when n =2, €, 1is
about one-fourth as large as ¢ (i.e., the nonlinearity is reduced by uearly

a factor of 4). Values of ec/e for various values of n are given in the
following table:

R e

Mode number, n ec/e
2 0.261

3 .571

L .T34

5 .820

10 <950




L mode, and

The bulk of the experimental results were obtained for the n
0.734e. The

the comparison of theory and experiment was made by using ee
experimental work is discussed in the following section.

EXPERIMENTS

Apparatus

A thin seamless copper ring was used 1n the experiments; i1t had a radius
of 4 inches (10.16 cm), a thickness of 5.1 x 102 inch (0.0l3 cm), and a
length in the axial direction of 0.988 inch (2.51 cm). The ring was supported
by four very thin suspension threads, equally spaced around the circumference,

as shown in figure 8.

Radial motions of the ring were measured by two inductance pickups which
operated in a push-pull fashion. These deflection sensors were mounted on a
fixture with a large bearing that allowed them to move circumferentially around
the ring. Vibrations of the ring were excited by means of an electrodynamic
shaker. The shaker was connected to the ring by a fine tungsten drive wire
(0.001-inch (0.003-cm) diameter), which served as a very soft coupling spring
between the shaker and the ring. (A simplified sketch of the apparatus is shown
in fig. 8.) This arrangement made it possible to estimate the amplitude of the
force which was experimentally applied to vibrate the ring.

The response of the
ring was analyzed, and the
vibration modes were iden-

s oss st esssssnoros tified by means of Lissajous
Suspension figures. These and other
threads (4) ) technical details of the
experiments are discussed
in appendix G.

Oscillator 7‘ Measurement of Mode Shapes

Ipductance /—Ring
pickups {2)
e Drive wire

o
L

—{ Shaker :l
Carrier "
amplifier Amplifier %—— The mode shapes were
e - measured by exciting one
<:> mode <cos %?, n = h) and
. A o recording the amplitude of
Differential N
( ;ﬁﬁgﬁ L_{:j%%@f”g LRO, the response at intervals
along a half wavelength.
Counter Measurements were made sep-
arately on two different
half waves; the amplitudes
Figure 8.- Simplified schematic of experimental apparatus. ranged from about 1 to 27

times the thickness of the
ring. These amplitude
measurements are shown in
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figure 9, where the solid lines
correspond to the deflection shape —— Assumed shape, sinmr
assumed in the analysis. As indi- ©  Experimental data
cated in figure 9, the main vibra-
tion shape was virtually independ-
ent of amplitude. Additional
results presented in reference 15
include a plot of the root-mean-
square response around the circum-
ference of the ring and measurement
of the motions which occurred at

the nodes of cos %% for the

A/A
single-mode response. /Armax

Response Curves for the
n = 4 Mode

Some typical experimental
results are shown in nondimensional
form in figure 10 for four differ-
ent values of the input force. The
magnitude of the input force was Fraction of half wavelength, r
held constant for the individual
;i}sfe}gﬂgi s;li;\éz;eg‘}tr Igzliﬁlﬁzl:ianig{ei Figure 9.- Comparison ?; ra\s/;;lirgﬁcsi ;nn(:sfitsuhdif and experimental results
(25,, peak-to-pesk) during each

run. An electronic counter was used to measure the period of the forecing func-
tion at each data point; by this procedure it was possible to determine the fre-
quency ratio ®/wy, very accurately. The amplitude of Ay(t) was measured at
one antinode of cos %g, and the phase of the response @A was determined there
wlth a standard phase meter; the magnitude of Bn(t) was measured at an adjacent
node of cos %?‘ To facilitate comparison with the analysis, these experimental
amplitudes were nondimensionalized on the ring thickness.

Corresponding theoretical results are shown by the solid lines in fig-
ure 10. The backbone curves were calculated by using equation (19) with wymL

in place of § and €, substituted for ¢; both changes were made to account

for the influence of tangentlal inertia and the additional nonlinearities dis-
cussed previously. The same corrections were used in computing the forced
response, which was obtained from equations (16) for the undamped case. The
input force used for these calculations was computed from the shaker displace-
ment and the spring constant of the drive wire. A detailed comparison of the
calculated and measured response for the driven mode is given in figure 11,
which is for a peak-to-peak shaker displacement of 25, = 0.3 inch (0.76 cm).
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Figure 10.- Response curves for n = 4 mode.
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Discussion of the Experimental Results

As shown in figure 9, the experimentally determined mode shapes were
nearly perfect sine waves along any half wavelength. This result was found to

be independent of the maximum amplitude of the motion, as figure 9 indicates.
For the single-mode response, the displacements at the nodes of cos %g- were
found to increase linearly with the square of the meximum amplitude. (See
ref. 15.) This behavior is in agreement with the analytical results.

The response curves of figure 10
7 show good correlation with the theo-~
retical backbone curves, and figure 11
shows a frequency difference of less
than 1 percent between theory and
experiment. This slight discrepancy
was probably due to small errors in
estimating the force applied to the

ring.

A/h

The experimental response curves
exhibited the jump phenomens and the
appearance of a secondary resonance
peak for the driven mode. The latter
peak resulted from the fact that, in
the experiment, the driven mode and

the companion mode had slightly dif-
\:ﬁ\\\ ferent natural frequencies. Because
© of this disparity, it was not possible
. to meke a quantitative comparison of
96 98 1.00 102 LM the coupled-mode response with the
W corresponding theory. However, quali-
tatlve agreement with the analysis was
obtained for the two-mode case and
included the result that in some
instances the companion mode vibrated
to larger amplitudes than the driven
mode. One major feature of the theory which was not detected experimentally was
the so-called "gap" in the response; the disappearance of the gap was apparently
due to the difference in the natural frequencies of the coupled modes. The only
results which might have been related to the gap were occasional nonsteady
beating responses. These were sometimes observed to the left of the companion-

mode resonance peak.

Amplitude
Thickness’

Figure 11.- Calculated and measured response. n = 4 mode;
26 = 0.300in. (0.762 cm); €¢ = 3.08 X 1074,

In order to understand more fully the response of the ring in the gap
region and to verify that such a gap did theoretically exist, equations (12)
were solved on an analog computer. The analog solutions confirmed the previous
analytical results, as shown in figures 2 and 5. Nonsteady vibrations with
beats occurred in the gap reglon. The analog procedure is outlined in

appendix H.
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CONCLUDING REMARKS

The nonlinear flexural vibrations of thin rings were analyzed by choosing
vibration modes and applying Galerkin's procedure. The vibrations were assumed
to involve no stretching of the midsurface of the ring; this assumption was
found to be adequate for the study of flexural vibrations. In the analysis,
only one mode was directly driven by the forcing function; nevertheless, it was
necessary to include two vibration modes in the calculations because under cer-
tain conditions, nonlinear coupling caused the companion mode to respond and
participate in the motion. In other cases, the single-mode response was
sufficient.

Significant improvement in the theory was obtained by includling the effect
of additional nonlinearities in the strain-displacement relations. Retaining
the effect of tangential inertia also improved the calculations, but to a lesser
extent. Both these modifications lose their importance as the mode number
increases; however, they combined to decrease the nonlinearity parameter by more
than 25 percent for the third flexural mode (n = 4).

The experimental results were found to be in good agreement with the anal-
ysis, both qualitatively and quantitatively. Theory and experiment both exhib-
ited the jump phenomenon, nonlinearity of the softening type, and the appearance
of the companion mode. The measured responses were in good agreement with the
calculated values, and the experimentasl mode shapes demonstrated the appropriate-
ness of the deflection form employed in the analysis.

The results of the present study are characteristic of the nonlinear forced
vibrations of axisymmetric elastic bodies. In such structures, the nonlinear
forced vibration of one mode often results in the response of both the driven
mode and its companion. Vibrations of this type occur because of the nonlinear
coupling that exists between the modes involved. The nonlinear forced vibra-
tion of thin circular cylinders, thin eircular cones, and other thin axisym-
metric structures can be expected to exhibit similar behavior.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 4, 1965.



APPENDTX A

CONVERSION OF U.S. CUSTOMARY_UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General
Conference on Weights and Measures, Paris, October 1960, in Resolution No. 12

(ref. 16).
lowing table:

Physical

quantity

Force . . .
Frequency .
Length . . .

Load . . .
Mass density

Moment per unit length .

Stiffness .

Young's modulus . . .

U.S.
Customary
Unit

1b
cps

in.

1b/in2
lb{secg/inu
in-1b/in.
1b/in.

w/wE |

Conversion
factor

)

445
1

0.0254
6895

27 679.9
b.45
175.2
6895

|

*Multiply value given in U.S. Customary Unit by
equivalent value in SI unit.

Conversion factors for the units used herein are given in the fol-

SI unit

newtons (N)

hertz (Hz)

meter (m)
newton/meter2 (N/mg)
kilogram/meter> (kg/m>)
meter-newton/meter (m-N/m)
newton/meter (N/m)
newton/meter? (N/m?)

conversion factor to obtain

Prefix to indicate multiple of units i1s as follows:

26

Prefix

Multiple

|

centi
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APPENDIX B

THE EQUATIONS OF MOTION

The equations of motion for a thin circular ring become nonlinear when
finite displacements are considered. The purpose of this appendix is to pre-
sent a brief development of these equations.

Useful Results From Shell Theory
The equations for rings can be obtained in a straightforward manner by a

specialization of the analogous equations for thin cylinders. The latter equa-
tions have long been employed in nonlinear analyses of thin cylindrical shells;

they are often derived (e.g., refs.

1 and 2) and are simply repeated here:

AN 2
Me , My _ 5 3w (B1)
ox 9y ot
any ?.Z = ph QEI (Bg)
ox By 32
A P B ) 2, B )
%2 axay dy2 a *ax Yoy y\Toy Y x
Ny
- -R— + Q(X)YJt) = ph :t; (B3)
The variables u, Vv, and w are the midplane displacements in the axial, cir-

cumferential, and radial directions, respectively.

My,

moments per unit length (Ny, Ny,
are

(See fig. 1.) Forces and
ete.), defined in terms of the stresses,

Jrh/z n/2 n/2 h
Ny = Oy 4Z N = f o] dz Ny = f Oy 42
* ~h/2 o * -h/2 Xy v -h/2 e
> (B4)
h/2 h/2 h/2
My = Jf OxxZ 42 Myy = Jf OxyZz dz My = Jf Oyy2 dz
~h/2 ~h/2 -h/2 p

The applied load q(x,y,t) acts in the radial direction.

Equations (Bl) to (B3) contain both forces and moments as well as dis-
placements. Before specializing these equations to apply to rings, it is
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desirable to express them in a more workable form. To achieve the desired form,

the following procedure is used:

(1) The strains are related to the displacements u, Vv, and - w
(2) Hooke's law is used to relate the stresses to the strains

(3) By combining the relations from (1) and (2), the stresses are written
in terms of the displacements and then employed in egquations (Bl) to (B4).

The strain-displacement relstions are approximated by

. =@+i@>2_ziz )
XX T ax o 2\ox 3x2
2 2
_ov ¥, 1fow oW
eW'ay+R+2<ay> Z6y2 (B5)
dv . du . dw dw 35w
xy T % * dy " x dy 22 dx axj

Transverse shear deformation is neglected, and the transverse normal stress is
assumed to be negligible. These assumptions may be written as

€xy = 0 €yz = 0 Ogy = 0

These relations are commonly employed in nonlinear analyses of thin cylinders.

2

Terms like %<§§> give rise to nonlinearities in the equations of motion.
Next, Hooke's law 1s used to relate the stresses to the strains and with

the preceding assumptions yields

E

O'yy = 1—:—;§(€y-y + 'VEX_X)

]

Oxx ——EL_E(GXX + veyy)

1 ~v
Oy = o €
Xy 2(1 + v) Xy

where E is Young's modulus and v 1s Poisson's ratio. Employing these
stresses and equations (B5) in equations (BL) and carrying out the integration
through the thickness gives the following forces and moments in terms of the

displacements:
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2 2]
Ny=_Eh_a_v+E+l(h>+v@+l<i>
1- 2 R 2y x  2\3x) |

2l
__H w1V, fv W, 1w
e = 1 - p2)ox ¥ 5<aX) * v[éy TRT2 &Y>

—

Fh <av du  Ow Ow
N, X

y=2(l+v)$+$+ax$> : (56)

( 52w
M = ~-D(1 -~ v
Xy )Bx dy J
Fh?
where the bending stiffness D = ——————.,
12(1 - +2)

Derivation of Ring Equations

To specialize the cylinder equations to a ring, the following assumptions
are made:

(1) The displacements w and v, as well as the radial load g, are
taken to be functions of only the circumferential coordinate y and time ¢t.

(2) The thickness and the width of the ring are both taken to be constant.

The ring is assumed to be thin, so that (%) is negligible in comparison
with unity.

(3) The forces Ny and ny are assumed to be zero throughout the ring.
The boundary conditions require that Ny and ny vanish at the ends of the

ring (at x =0, x =b (fig. 1)); for flexural vibrations, rapid changes in
the x-direction are not anticipated, and it becomes reasonable to assume that
Nx = 0 and ny = 0 +throughout the ring.
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When these assumptions are used, equations (B6) reduce to

)
Ny = Eh[gyi+%+%%)]
Ny = O
ny =0
) (B7)
>%w
= D =—=
2
My = -vD o
dy>
Mxy =0 Y.

Substituting equations (B7) in equations (Bl) to (B3) yields the following
ring equations:

o=ph—5—22 (B8)
o2
ON. 2
Y oo OV B
S 7 2 (29)
DBM_W N_Y_aNé"_) oh 9¥ = 4(y,t) (B10)
ok B ooy\ 7V oy 2 ’
where
;v , w , 1fow c :

Equation (B8) is unimportant for the problems dealt with herein and will hence-
forth be dropped.

Note that there is a similarity between equations (B9) and (BlO) and the
following analogous equations for a vibrating beam:

o _ g
~ = P - (B12)
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ET 3w _ i(T 3—‘*’) + pS P _ a(x,t) (B13)
3t ox\ ox 32
where
S cross-sectional area
T longitudinal tension in beam
EL bending stiffness
X longitudinal coordinate
o} transverse load
W,V lateral and longitudinal displacements, respectively

The term Ny/R occurs for the ring but not for the beam because the ring is
curved.

Tt should be noted at this point that the ring equations (eas. (B9) and
(B10)) conmtain the same shortcomings inherent in the cylinder equations
(egs. (Bl) to (B6)). For example, both sets of equations meke the assumption
that 1/n2 is negligible in comparison with unity (where n is the circum-
ferential mode number). As a result, these equations lose their accuracy for
low values of n (e.g., n<6). In the case of cylinders, Morley (ref. 25)
removed this difficulty by modifying the bending terms. This modification was

2
accomplished by replacing Dvhw by D<72 + §§> w in the final equations; the

analogous modification of equations (B9) and (Bl0O) results in the following set
of improved equations of motion for a ring (egs. (la) and (1b)):

Ay o

dy 32

2 2 N =

where

v L w l<8w 2
Ny = Eh|— + & + ===
y [ay R~ 2\3¢
Except for the bending terms, equations (B9) and (B10) and (la) and (1b)
are identical. Because of this difference, however, only the latter set yields

the correct linear ring vibration frequencies, and for this reason they are
employed in the present analysis.
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APPENDIX C
APPLICATION OF THE METHOD OF AVERAGING

The method of averaging (sometimes called "the method of slowly varying
amplitude and phase") is often employed in nonlinear vibration problems. This
technique is demonstrated here by applying it to equation (14) which is repeated
here for convenience:

2
e, oo, Lo o 4 e, act, . <d§c>2 . .
de BC dr EC p) c d.rg T = b COS T

To apply the method of averaging to this equation, let

to(7) = A(t)cos[ar + o(r)]

A cos X

where A and ¢ are assumed to be slowly varying functions of T, and X des-
ignates [@T + @(1)]. Taking the derivative of {.(T) gives

d dA
—EE = -AQ sin X + == cos X - 9 4 sin X (c1)
ar dr dr

In the method of averaging, the result in equation (Cl) is replaced by two
equations; namely,

a
e _ _AQ sin X (c2)
d~
and
B s x - pasinx =0 (c3)
T dTr

The second derivative dggc/&Tg is then, computed from equation (C2),

2
a7t = -AQ°cos X - gA Q sinX - A %9 Q cos X (ch)
T

d.T2 T

Next, the preceding approximations for €, dCC/dT, and dgﬁc/&Tz are sub-
stituted into equation (14). The result is
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(l-QE)AcosX—%Q sinx-AgEQ cos X - 2P.0A sin X
T T

+ %.A cos X(—QeAgcosgx - QA %é sin X cos X - 02 & oos?x

T ar

+ 92A2sin2X) = Gp cos(X - @) (c5)

Both sides of equation (C5) are then multiplied by cos X, and the result is

added to equation (C3) after the latter has been multiplied by & sin X. This
procedure yields

(1 - 92 cos™ - an g—q’ - 2B,0A sin X cos X + S A coszx[—QEAg(cosgx - sin)
T

dA

-QA<E_ sin X cos X + A %9 cosng] = Gn(cos2X cos ® + sin X cos X sin @) (c6)
T T

Finally, this equation i1s "averaged" by integrating over one period on X. 1In

the integration, A(7) and o(7) are approximated by their average values A
and ¢, for example,

;L.

2x 2n
JF A(7)cosX dx =~ k/\ A cos™ dx
0 0

dr

21 2n =
f A3(Q)cos”x qxX ~ f K3<9‘3>cos“x ax
0 dr 0 dT

where da/dT is the average value of d@/&T. When equation (C6) is averaged
in this fashion, it becomes

3n K5 as
N

3 253 % 43
2)% _ oox 40 QA 3eQA” 40 —
(l -Q )A XA I m 5 3. Gp cos @ (c7)

In a similar fashion, a second equation for A and ® is obtained by
(1) Multiplying both sides of equation (C5) by sin X

(2) Adding this result to equation (C3) after multiplying the latter by
-0 cos X

(3) Averaging the final equation by integrating both sides from X = 0
to Zn.
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These manipulations give

- — -
dA re eQA™ dA =

o0 &2 L2 — =Gp sin @ c8
dr Be 8 ar n (c8)

Equations (C7) and (C8) are first-order coupled differential equations for
A apd ©®. They may be simplified to coupled algebraic equations when steady-
state vibrations are considered. _For example, steady-state vibrations imply
that the average values A and ® remain steady (i.e., constant) with time.
In this case, the average derivatives dA/dr and d¢/dr are identically zero,
and equations (C7) and (C8) can be reduced to

_ re —
(1 - 0?)x - E%f—*— = Gy cos O (16a)
~2B.0A = Gy sin @ (16b)

These algebraic equations can now be solved simultaneously to give A and @
as functions of Gp, €, Be, and Q. Such a result is indicated in

equation (17).

3k



APPENDIX D
STABILITY OF THE ONE-MODE RESPONSE

To investigate the stability of the one-mode response (egs. (18)), both
CC(T) and ¢ (v) are disturbed slightly. The disturbed variables can be

expressed as

E(T) =& COS(QT + 5) + £.(T) (p1)

t(T) =0+ £ (7) (p2)
where £.(1) and &, (1) represent small perturbations in the response of
cos %g and sin %g, respectively. The solution (egs. (18)) is said to be

stable if §E, and &g do not increase with time.

Substituting equations (D1) and (D2) for (., and (g into equations (12)
and retalining only first-order terms in the perturbations gives

) _ d2§ D _at
[1 + €& cosP(ar + qa)] ¢ _ A sin 2(ar + B)—-S
2 de 2 dr
i° 2 = 2 =
+ 1+€—2_[sin(m+c1>)-2cos (QT+<1>)] £, =0 (D3)
and
2 o2
d-g eQ A —
dT25.+ [ - —5— cos 2(Qr + ®ﬂ tEa =0 (D)

where A cos(Qr + @) 1s presumed to satisfy equation (14), and, for simplicity,
the case B = Bg = O has been considered. (The case of nonzero damping is
analyzed in ref. 15.)

Analysis of Perturbation Equations
It will be noted that equations (D3) and (D4) are ordinary differential
equations with coeffilcients that are periodic in time. Such equations arise

frequently in stability analyses; they are typified by the Mathieu equation,

a%y
== + (K + 16Q cos 22)Y = 0 (D5)
az
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which has been studied extensively. (See refs. 21 and 26.) Tts solutions are
stable (bounded) for particular combinations of K and Q and unstable
(unbounded) for others. Thus, associated with equation (D5) are certain stable
and unstable regions in the KQ-plane. As indicated in the following para-
graphs, the Mathieu equation results are useful in analyzing equations (D3)

and (D4).

As it stands, equation (D3) has a periodic coefficient in every term. In
simplified notation, 1t can be written as

2
d d
(l + U cos2X) fe - uQ sin 2X -§£-+- E.+ p(sinzx -2 cosgxﬂgc =0 (D6)
are dr
22 -
where u = EE— and X = (91 + @). N

The first-derivative term can be removed by using the following transfor-
mation of variables:

—_ ™
X = (Q1 + 0)
4 .4
dT ax dar
- gL
=0 = F (D7)
fx nsin2xdx
Z 2 j
gC(.X‘) - U(X)e 0 2 l'HJ.COS X
= U(X)(l + U cosgx> )

With these new variables, equation (D6) becomes

2 2sin22Xv~1
(1 + COSZX)g—g + 25 + u(sinEX -2 cosgx> + L cos 2X + H U=20
ax Q M(i + 1 coségﬂ

(D8)

Dividing by (l +u cosEX> and expanding equation (D8) for small values of u
gives the approximate Mathieu equation

) 72 "
d‘_U L _.€_A'— 2+l —-€—A— 2 + 2 = D
dx2+92[1 M(Q ) A(Q + 1)cos 2 O(e)U 0 (D9)
A”
where pn has been replaced by its equivalent -
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The first instability region of equation (99) can be estimated from the
known results for equation (D5). In terms of A and , the one-mode response
is unstable (with respect to perturbations of Cc) within the area bounded by

)

1_52K2+o(e2)<a<1-§§—+o(e2)

The boundaries of thils region coincide with the locus of vertical tangents to
the response curves, where the Jjump phenomenon of nonlinear vibrations occurs.

In a similar fashion, the substitution X = (Qr + 5) transforms equa-
tion (D4) to

2 -2
a E,S + <—:-L— - Q_ cos 2)()&3 =0 (DlO)

The first instability region of this equation defines another area in which the
one-mode response ls not stable. 1In terms of the amplitude A, instability of
the solution requires that

i° > E£9§5%452 for 021
or
I\2>ﬂl;292—) for €1
ef

These inequalities may be expressed as a restriction on Q, and the solu-
tion is unstable (with respect to perturbations in gs) within the region

_ 2
1--6-3-2-+o(e2)<9<1+€_g_+o(e2)

From a physical standpoint, the preceding conditions define a "eritical
amplitude" A.,. of the single-mode response. To understand this result more

fully, recall that CC(T) is associated with cos %g and that (g (7) is

related to sin %g. The loading gq(y,t) was chosen so that the driven mode

cos %g receives excitation from the external force and the sin %g mode
receives none. This difference in excitation shows up in the differential equa~-

tions which govern Cc and Cs, and a possible solution to these equations is

A cos(or + )

£(T)
£s(7)

0
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where the sin %g mode does not vibrate. As pointed out by the stability

analysis, however, if the driven mode exceeds the critical amplitude

. <M>l/2

692

then the one-mode approximate solution becomes unstable. For amplitudes of
cos %g in excess of Kér: the companion mode will respond, despite the fact

that it is not (directly) excited by the forcing function.

Discussion of Stability Boundaries

The first instability region and the response of the companion mode have a
simple physical explanation. The cos %g and sin %g modes may be regarded
as the only modes of vibration of a two-degree-of-freedom system, where both
modes have the same natural frequency. As a result of the nonlinear terms in
the equations of motion, dynamic coupling exists between the modes. When one

mode cos %? is harmonically excited in the vicinity of its natural frequency,

the dynamic coupling causes the companion mode to respond. (In the terminology
of nonlinear vibrations, the companion mode is said to be "parametrically
excited.") Many other vibration problems give rise to similar coupled-mode
vibrations; one such example is the nonlinear sloshing of liquid in circular
tanks.

Up to this point, only the first (and most important) instability region
has been discussed. The second, third, and higher instability regions of equa-
tions (D9) and (D10) indicate that the solution (egs. (18)) becomes unstable in
narrow areas near § = 1/2, 1/3, 1/4, . . . . Additional calculations are
required to provide adequate solutions in these regions; such results are dis-
cussed on pages 54 to 56 in reference 15 under the title "Ultra-Harmonic
Response.”" (For a general discussion of ultraharmonic responses, stability of
vibrations, and jump behavior, see ref. 26.)

The results of the stability analysis for the one-mode response are sum-
marized in figure 4, where the qualitative effect of damping is indicated by
the dashed lines. Damping affects the stability boundaries primarily near
2 =1 and for small values of A.
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CALCUIATION OF A, B, @, AND V¥

_ _Equations (22) and (23) form a set of five algebraic equations for A, B,
®, A, and VY. From these_equations, it is desirable to obtain response curves
of the variations of A, B, ©®, and ¥ with & for constant values of B,
Bs, €, and Gp. These results are best obtained by using an indirect
approach, as 1s frequently the case in nonlinear problems.

The technique used was to treat Gp as an unknown and compute ﬁ; Gp, 9,
and V¥ for several values of A at particular values of Q. This procedure
resulted in curves of Gp plotted against A with § as a parameter. Then
response curves of the variation of A with O for constant values of Gn

were obtained by cross plotting. 1In a similar fashion, curves of B plotted
against Q, ® plotted against §, and so forth, were determined. The method
is outlined in the following section. Note that in this approach A and @
are regarded as being given, with B, Gp, ¢, A, and V¥ the unknowns.

To compute Gp, it was first necessary to represent sin 2&, cos 2&, and

B° in terms of known quantities by manipulating equations (23c) and (23d).
For example, when B 1s nonzero, these equations become

cos 2A gi + &£Q2_1_£l (EL)

A2 e—:QEK2
and
—  8p.n
sin A = —2 (E2)
22
e A

respectively. By using the identity sin22§ + coseég = 1, these equations com-
bine to give a quadratic for B™:

, 2
3 8(e? - 1) =2, 16(92 -_;)2 + (8359)2 - (eQ2K2>
2)2

B + =0
€02

(eQ

Solving this equation yields two roots for ﬁQ. In the present problem, the
relevant expression is

o 1/2
B - u(les—zeﬂg) ’ 65122 [(692‘&2) - (SBSQ)E] (25)
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The other root i1s similar in form but has a negative sign before the radical
and was consequently discarded as an extraneous root because it will not satisfy

equations (23) in the 1limit as Bg tends to zero.

From this point on, 52 can be regarded as a known quantity, since the
right-hand side of equation (E3) is expressed completely in terms of the glven
variables. With B now completely determined, cos 2A can be found from
equation (El). Similarly, sin 2A is given in terms of A, €, €, and Bg

by equation (E2).

From_an operational standpoint, it is now a straightforward problem to
compute B, A, Gp, and &. With A, @, €, PBg, and B given, B~ 1is
found from equation (E3). Then sin 2A and cos 2A are computed by using
equations (El) and (E2). These results are all substituted into equations (23a)
and (23b) which are repeated here for convenience

— — 2% - —

Gy cos & = (1 - Q@)X - é%A(KQ - 52cos 2A)
- _ 2 _
Gp sin @ = -2800R - €978 B21n oK

and which relate the unknown quantities on the left to the known variables on
the right. The nondimensional force Gp and the phase & can then be found

from trigonometric identities; that is,

>1/2

Gy = (Gngcose?é + Gp2sin®0 (E4)
and
— G, sin @
§ = tan (2 (E5)

Gy cos @

where Gp cos ® and Gp sin @ are computed from equations (23a) and (23b).

Similarly, A can be determined as

A-1 tan-l<_.__Sin 2§> (E6)
cos 2A

since sin 2A and cos 2A are known from equations (El) and (E2). Finally,
B and V¥ are easily obtained, since

B =\5° (ET)
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and
V=A+0 (E8)
where §2, Z; and ® are all known from preceding calculations.

This approach was used to obtain curves of the variations of A with Gns
B with Gpn, and so forth for particular values of . By cross plotting the
results, the response curves of figure 5 were obtained. The damping coeffi-
cients, Bg and P, and the nonlinearity parameter ¢ were held fixed during
the calculations. The actual numerical work was done on an IBM 7090 electronic
data processing system by using a simple FORTRAN program.

By using a large value of g 1n the calculations, the companion mode was

suppressed and only the driven mode responded. This technique allowed the same
program to_be used to compute both the one- and two-mode response curves.

Plots of & against Q and ¢ against § were also made, but they are not
presented here since the phase of the response is of relatively minor interest.
For the coupled-mode case, however, it_is interesting to note that A was
usually close to zero. Both ¢ and V¥ ranged from -nx to —n/2 as the fre-
quency ratio varied from O >> 1 down to Q = 1. Similar results were obtained
for the single-mode response.
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STABILITY CF THE COUPLED-MODE RESPONSE

As in the investigation of the stability of the single-mode response
(appendix D), the stability of the coupled-mode response (eqs. (24)) may be
examined by disturbing (., and {  directly:

Eo(T) = A cos(QT + 5) + Eo(T)

ts(7)

B sin(QT + V) + gS(T)

In the present case, however, this procedure results in two very complicated
coupled differential equations involving £, and Eg, with each term in the

equations having a periodic coefficient. A simpler analysis (which is adequate
for purposes of this report) can be made by the method of averaging.

Use of the Method of Averaging

To apply the method of averaging to the stability problem, let

A=Ay + a(Ty\
gzgo +b(T)
- = (F1)
<§=®O +(P(T)
$=-\Fo+7(’r))
where the steady-state solution has been redesignated by
to(T) = Ay cos(QT + 56)
— - (F2)
ts(T) = Bo sin(QT + Wo)

The variables a(T), b(r), (1), and 7y(r) represent small perturbations in
the amplitudes and phases of the steady-state response. The solution (egs. (24)
or (F2)) is saild to be stable if a, b, @, and y do not increase with time.

Substituting the preceding expressions for A, B, &, and ¥ (egs. F1))

into equations (21) and retaining only first-order terms in the perturbations
gives coupled equations of the form

da db o dy
8 + Chs — + Cxz. L2 p o0+ e, ~L + Cosy + Cp. L =
c1j8 *+ o5 3o chb *oyy g t C5 * cgy 3.t o1t ey Ih 0 (F3)
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The index J ranges from 1 to 4 and corresponds to each of the equations (21a)
to (21d). The coefficients cij are independent of T and depend upon such

quantities as the original amplitudes, phases, and damping. For any set of
steady-state values (Kb, Bos 9, €, etc.) the values of cjj are constant,

and equation (F3) then represents a system of linear equations with constant
coefficients.

Such equations are readily solved by standard techniques. For example,
when the substitutions

a(r) = aleKT

b(T) = ble-)\T
p(7) = @M
() = 71N

are made in equation (Fj), an eigenvalue problem for A results:
|z - am| =0 (Fk4)

where I, and M are real, nonsymmetric four-by-four matrices involving the
constants cjj; &1, by, @1, and 7yj are also constants. When equation (Fh)

is multiplied out, it gives a polynomial which ylelds complex roots Aj. If

steady-state solution (Ag, Bo, I, etec.) is unstable at that point. Con-

versely, the vibrations are stable if all the roots Aj; have negative real
parts.

any root has a positivi_real_part, the perturbations increase with time and the

The Stability Boundaries and Their Interpretation

For the case of no damping (Bc =0, Bg = O), equation (F4) can readily be
expanded to give

A%+ 202(a2 + p2)A2 + oPp2(a? - 82) = 0 (F5)

where the substitutions

A = 20N
ag _ eQi?QE
2
o eﬂeﬁb
= = 2
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have been used for simplification. The roots of equation (F5) will have nega-
tive real parts if the lnequality

-2
—2'588€A° + 0(e2) < 0 (F6)

is satisfied.

On the other hand, in the absence of damping, equation (23c) shows that
real nonzero values of B will exist only if  meets the condition

-2
o<1 +%+ o(e2) (F7)

(Note that this condition agrees with that in the one-mode stability analysis.)
(See appendix D.) The preceding inequalities combine to show that the approx-
imate solution (egs. (24)) is real valued and stable (in the absence of damping)

within the region

_2 o
2.38eA A
l-—-——3§—+0(62)<§2<l+€—8—+0(€2) (F8)
The results of the coupled-mode stability analysis are presented in fig-
-2
€A

ure 7. Real values of B do not exist to the right of the curve Q =1 + 37

=2
and the two-mode solution is unstable to the left of the curve O =1 - glégié—.

Damping alters these stability boundaries, primarily near =1 and for small
values of A. The effect of a small amount of damping is indicated qualita-
tively in figure 7 by the dashed lines.
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APPENDIX G
TECHNICAL DETAILS OF EXPERIMENTS

For reasons of conciseness and readability, it was necessary to omit from
the body of the report many of the technical details pertaining to the experi-
ments. The purpose of this appendix is to explain some of these experimental
intricacies which include the measurement of the forcing function and the anal-
ysis of the response by means of ILissajous figures.

Equipment for Measuring Deflections

Radial motions of the ring were measured by two inductance pickups. These
deflection sensors were mounted on a fixture with a large bearing which allowed
them to move circumferentially around the ring. (See figs. 12 and 13.) The
signal from each pickup was fed through a carrier

Figure 12.- Overall view of experimental setup.  L-65-7901 Figure 13.- Closeup of ring. L-65-7902
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amplifier and into one side of a differential amplifier, the output of which
was in turn sent through a band-pass filter to a cathode-ray oscilloscope (CRO).
(A block diagram of the arrangement is shown in fig. 8.) The system was con-

nected so that the pickups operated in a push-pull fashion; this arrangement
resulted in an antisymmetric operating characteristic, shown in figure 1h.

. ’
l

10 -

Output, volts (dc)
(e}
T

Plckup ng

16k - ;
- i ﬁ N

-20 r [ .
Actual size and spacing shown
-30L
S S, - i I 1. | 1 1
-.16 -.12 -.08 -.04 0 .04 .08 .12 .16
Displacement, d, in.
- _ 1 1 1 1 i 1 i 1
-.40 -.30 -.20 -.10 0 .10 .20 .30 .40

Displacement, d, cm

Figure 14.- Calibration curve for pickup system.

Application and Measurement of Forcing Function

Vibrations of the ring were excited by means of an electrodynamic shaker.
The shaker was connected to the ring by a fine tungsten drive wire (0.00l-inch
(0.003-cm) diameter), as shown in figures 12 and 13. The wire served as a very
soft coupling spring between the shaker and the ring. Soft coupling was imper-
ative, since the spring acted as a constraint and raised the effective natural

frequency of the ring.

The shaker amplitude and frequency were controlled by a standard
oscillator-amplifier arrangement. By recording the displacement of the shaker
and knowing the spring constant of the wire, it was possible to compute the
force acting on the ring. That is, for a shaker displacement of 8, cos wt,
the amplitude of the force exerted on the ring was

P = % kB, (G1)

where k 1s the spring constant of the drive wire, ©, is the amplitude of
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the shaker displacement, and the factor 1/2 arises from the geometry of the
drive-wire arrangement. Strictly speaking, equation (G1) applies only for
static displacements of the coupling spring. However, when the fundamental
resonant frequency of the coupling spring is much higher than the frequency

supplied by the shaker, the equation P = % k3, becomes a very good approxima-

tion. In this case, the inertia of the coupling spring can be neglected, and
the spring displacements are quasi-static.

Although other types of coupling springs were triled, 1t was found that the
tungsten drive wire was the only one which could satisfy the conflicting
requirements of soft ocoupling (i.e., a low value of k) and high resonant fre-
quency. The wire used in the experiments had a fundamental frequency of
300 cps (300 Hz) and a spring constant of only 0.035 1b/in. (6.12 N/m).

Because of i1ts low stiffness, the drive wire had only a slight influence
on the natural frequencies of the ring. However, its attachment to the ring

was such that the frequencies of the cos %% modes were raised slightly,

whereas those of the sin %% modes were unaffected. This disparity created an

overlapping of two instability regions (fig. 15) and led to anomalous results.
To counteract this effect, it was necessary to add a small concentrated mass to

an antinode of cos %%, which lowered its natural frequency and separated the

unstable regions.

Adding the small mass had another beneficial effect, as 1t greatly reduced

the tendency of the nodes of cos %g to "drift" circumferentially. Such

shifting of the nodes can be explalned by considering small imperfections in
the ring, as noted by

Tobias (ref. 27). The v2477/3  Driven mode unsiable; "jumps’ occur

added mass was a short RIS Companion mode excited; both modes vibrate

plece of solder which was

glued to the ring directly

alongside the drive wire. — Overlap region
This arrangement fixed the
"preferential modes" of
the ring. (See ref. 27.)

Amplitude of
driven mode, A

The location of the
mass and the drive wire
may be thought of as the
origin of the circumfer-
entlial coordinate y. In
this case, the force @ wc > vg. ) w¢ < ws.
exerted on the ring acts ) L )
at y = 0. As a conse- Figure 15.- Shift of instability regions due to changes in natural frequency.

Amplitude of
driven mode, A

- —- ) el

quence, the cos ny nodes w¢ = Linear frequency of cos r—;%; driven mode. wg = Linear frequency
, —

. ny .
were driven by thé forcing of sin g™ companion mode.
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function, but the sin %g modes were not; that is, there was no generalized
force on the sin %% modes. Note that the analysis was conducted for a similar
case.

Actually, the loading used in the analysis (eq. (13)) was

Fn ny
a(y,t) = —& cos = cos wt
whereas the experimental loading was concentrated at y = O and can be repre-
sented as

a(y,t) = 3(y)F cos wt (G2)

In equation (G2), &(y) is the Dirac delta function and F is the load per
unit length that the drive wire exerts on the ring. For the experimental
arrangement described herein, F can be calculated from

F=s (63)

where b 1is the length of the ring and P 1s given by equation (Gl).

This type of loading (eq. (G2)) is analyzed in reference 15. The results
are very similar to those of the present analysis, provided that the driving
frequency w 1s in the vicinlty of the natural frequency of the cos %% mode.
In this case, the response of the ring can be approximated by using F 1in place
of Fp 1in equation (13) and other related equations. For example, the cor-
responding nondimensional force Gp becomes

Cn = F2 - - 2 (Gh)
7Rph “wy (nRphb )hayy

where equation (G3) has been used.

A more detailed explanation of the experimental apparatus is given in ref-
erence 15; as Indicated therein, refined experimental techniques were used to
minimize the nonlinearities introduced by the measuring system and by the sus-

pension, shaker, and drive arrangement.

Analysis of Response

Detection of a single mode.- As noted previously, the pickup system sensed
radial motions of the ring and converted them into electrical signals which
were displayed on an oscilloscope. These signals were interpreted with the aid

of Lissajous figures, as follows:
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The voltage proportional to the radial displacement of the ring was fed
into the vertical axis of the oscilloscope, while the horizontal axis was
driven by the oscillator which controlled the shaker. This arrangement resulted
in a Lissajous figure which indicated both the amplitude and the phase of the
vibration that was being sensed by the pickup. By slowly moving the pickup
around the circumference of the ring and noting the successive Lissajous fig-
ures, 1t was possible to analyze the motion of the ring. For example, when the

response consisted of primarily the cos %% mode vibrating near 1ts resonant

frequency, successive

Lissajous patterns such as

those shown in figure 16

were observed. The open ver-

tical ellipses indicated that

the major response was +90°

I out of phase with the forcing
l function; measurements showed

that the amplitude of the

ny

- oy
w AE(t) cos +CE('()

[

Node
Node

response varied as cos

around the circumference.

()<:j><) © —y At the zeros of cos El, the
R

ILissajous figures were small
horizontal figure eights
Figure 16.- Circumferential variation of Lissajous figures. which indicated vibrations
Single-mode response (resonance). at twice the driving fre-
quency. This pattern was in
agreement with the analyti-
cal results, which predicted the occurrence of this type of "double-frequency
contraction."

8 «—— — Node

8

O
Q*AE(U measured here —
-

of Jo

These observations were in general agreement with the assumed vibration
mode; namely,

w(y,t) = A (t)cos % - z—i AL (E) (@5)

where An(t) ~ cos wt. BSubsequent measurements around the circumference of the

ring supported this conclusion.

Circumferential variation of response.- The voltage V from the pickup
system can be represented as a Fourier series in time

V(y,t) = Vi(y)cos wt + Vy(y)cos awt + Vz(y)eos 3wt + . . . (a6)

with coefficlents that vary around the circumference of the ring. The coef-
ficients, Vy(¥), Vo(y), . . ., contain the spatial variation of the deflection

shape, combined with the harmonics introduced by the pickup system. By passing
the signal through a harmonic analyzer and using a narrow 2-cps (2-Hz) band-pass
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filter, the circumferential variation of the first, second, and third harmonics
was determined. This determination was accomplished by exciting the n = 4 mode
and recording the appropriate voltages at several positions along a half wave-
length. The results are given in nondimensional form in figure 17. The relative
amplitudes of the harmonics were in the ratio

: VB,max as 1 : 0,04 : 0.018

Vl,max : V2,node
As shown in figure 17, Vy(y) was almost a perfect sine wave. Similar
results were obtained for other half waves of the n =4 mode and led to the

conclusion that Vi(y) was very closely represented by V, . cos %?. It is
2

believed that this voltage variation was due entirely to the motion of the ring,
that is,

w(y,t) ~ A cos wt cos %g

would give rise to the observed results.

The variation of the other harmonics was influenced by the nonlinearities
of the pickup system which made it impossible to determine how much of the
cos 2wt term was caused by actual motion of the ring. As indicated in fig-
ure 17, however, Vg(y) did contain a major component that was constant in

space, as ls suggested by the theory.

The third harmonic in the signal resulted primarily from the nonlinearity
of the pickup system. The data indicated that V3(y) varied as

VB,max sianr, where r 1is the frac-

tion of the half wavelength. Such v
a result can be explained by consid- .
ering the antisymmetric operating 1, max
characteristic of the pickup system 0

and noting that the major input to

1.0

First harmonic

the system (i.e., the deflection of 2.0 [
the ring) varied as sin nr along a ol o

half wave. The latter result was v, ol °© ° s l
conflrmed by subsequent mode-shape v Lop @ @ lo o

measurements which showed that the 2, node '

primary deflection of the ring was
independent of the vibration ampli-
tude. (See fig. 9 and the related
discussion in the body of this I
report. ) , 3

Sin3ar

- O o

0 0.2 0.4 0.6 0.8 L0

Third harmonic

Additional results (ref. 15)
include a plot of the root-mean-

square response around the circum- Fraction of half wavelength, f
ference of the ring and measurement
of the amplitude of the "double- Figure 17.- Spatial variation of response voltage.

frequency contraction" at the nodes Amplitude of vibration: Apay = 16.1h.
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of cos %g. The conclusion from all these measurements was that the experi-

mental deflection could be expressed as

n

w(y,t) = Ag(t)cos —R:?'- + Cg(t) (G7)
when Lissajous figures of the type shown in figure 16 were observed. Amplitudes
Ap(t) and Cg(t) are the experimental time-varying amplitudes of cos %% and

the uniform contraction, respectively. The amplitude AE(t) was measured at the

antinodes of cos %%, whereas the contraction Cp(t) was measured at the nodes.

Detection of two coupled modes.- Early in the experimental program, it was
noticed that in some cases small changes 1n the driving frequency o caused
significant modifications of the Lissajous patterns. This behavior was traced

to the appearance of the companion mode sin EX} which participated in the

R
motion along with the cos %g mode.

When coupled vibrations of this type occurred, successive Lissajous pat-
terns such as those shown in figure 18 were obtained. The open vertical

ellipses were observed at the antinodes of cos %g and indicated that the

response there was 390° out of phase with the input force. At the nodes of
cos %%5 the Lissajous figures were stralght lines, which 1s characteristic of

a response directly in (or out of) phase with the input. The stralght lines
resulted from the sin %g mode, which has its maximum amplitude at the nodes

of cos %?. After trying various combinations of sines and cosines, it was

found that the observed Lissajous figures correspond to a deflection of the
form

w(y,t) = A cos(wt + @4)cos %? + B sin(wt + op)sin %? (e8)

which demonstrates the existence of the companion mode.

When the amplitudes (A and B) and the phases (@A and ¢B) of the motion

are exactly equal, a pure traveling wave results. That is, equation (G8) may
then be written in the form

w(y,t) = A cos[ig- - (a)t + @A)] (G9)

Observations with the aid of a stroboscope disclosed the presence of traveling
waves when Lissajous patterns such as those in figure 18 were noted. These
observations gave further indication that the coupled vibration involved the

1, . R R ¢
cos-l—?:Z mode and. its companion mode s1n-§z.
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Figure 18.- Circumferential variation of Lissajous figures. Coupled-mode
response (resonance).

\-— Node of cos
/~BE(t) measured here -

It was also noted that the appearance of the companion mode resulted in a
reduction of the second harmonic content of the response. This result is in
agreement with the analysis, as may be seen by examining the contraction term

(eq. (9))
2
2o(t) = = EfanB(6) + B2(0)

Since Ap(t) and By(t) are out of phase by 90° gi.e., A, ~ cos wt,
By ~ sin wt), the second harmonic component of Ap“(t) tends to cancel that

of Bng(t) when the two terms are added.

As a result of these and other observations, 1t was concluded that the
experimental deflection could be expressed as

w(y,t) = Ag(t)cos %1 + Bg(t)sin PRZ + Cg(t) (¢10)

when Lissajous figures of the type shown in figure 18 were observed. The coef-
ficients Ag(t), Bp(t), and Cp(t) are the experimental time-varying ampli-

tudes of cos %?, sin %%, and the uniform contraction, respectively.

Once the various responses of the ring had been identified, it was pos-
sible to obtain response curves of the variations of Az(t) and Bg(t) with

w and to compare them with the analytical results. These tests are described
in the body of the report.
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Other Results of Interest

In addition to the preceding results, several other experimental observa-
tions were made. Part of thlis work was an experimental response survey, the
results of which are given in table I. As indicated therein, several ultra-
harmonic responses were noted, including some which Involved coupling between
two modes with different mode numbers. Results of thls type are predicted by
the infinite mode analysis of reference 15. Additional experiments reported in
reference 15 include the steady-state response of the n = 3 mode and some
transient responses of the n = 4 mode. The latter responses demonstrate the
growth of the companion mode with time when the driven mode exceeds the critical
amplitude. Damping traces were also obtained for the n =3 and n =4 modes.
For these and other details, see reference 15.
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ANATLOG-COMPUYER STUDIES

The approximate solutions obtained by the method of averaging indicate a
gap in the coupled-mode-~response curves. In order to find out what happens
to the response in the gap region, an analog computer was used to simulate
equations (12) which are repeated here for convenience.

2 2 2 2 2
at ag a7 [at a"¢ g

C 4 op. 28 4t 4+ & — |22+ —28 4 (-—§> = G, cos

312 Pe g " et belfe 472 ar ¢s ar2 dr n €O8 T

2 2 2 2 2
LT Y c——dgs+—dgs>+€dgc+(dgc> "7
dT2 S ar 5 2°8;°s ar2 dr c ar2 dr

Analog-computer solutions were obtained for both the coupled-mode and
single-mode responses. The procedure used and the results obtained are briefly
discussed in the following paragraphs.

In setting up the analog procedure, the parameters B, Bg, €, and Gp
were held constant, and responses were obtained at various values of . The

procedure used was to set all the initial conditions equal to zero <i.e.,

d
to(0) =0, aég(o) = 0, etc.) and then turn on the forcing function at a par-

ticular frequency Q. The driven mode would respond to the excitation, and
usually it would reach a steady state, whether or not the companion mode

also responded. Once steady-state conditions were attained, the stability of
the response was examined by intentionally "bumping" or disturbing §, and {4
electrically. When the companion mode did not respond, disturbances to Cs
were found to damp out, as would be expected. Responses were obtained for

two distinct cases which differ in the amount of damping in the companion

mode.

Case 1: coupled-mode response.- In the case of the coupled-mode response,
the parameters used were

Be = Bg = 0.002 (equal demping in both modes)
e = k.2 x 107 (nonlinearity)

Gpn = 0.1 (force)

These values are the same as those used to calculate the coupled-mode response
by the method of averaging. As shown in figure 5, the analog results agreed
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very well with the analytical solutions. In the gap region, the analog traces
indicated nonsteady vibrations with beats. It was impossible to obtain steady-

state responses within the gap, even though the problem was run for several
hundred cycles.

Case 2: single-mode response.- In the case of the single-mode response,
the companion mode was heavily damped to prevent its vibration. The parameters
used were the same as the preceding case except for PBg which was B = 0.05

(companion mode damped heavily relative to the driven mode). The analog results
verified the analytical sclution for this case, as shown in figure 2.

55



2e

10.

11.

12.

13.

56

REFERENCES

Relssner, Eric: Non-Linear Effects in the Vibrations of Cylindrical Shells.
Rept. No. AM 5-6, Guided Missile Res. Div., Ramo-Wooldridge Corp.,

Sept. 30, 1955.

Chu, Hu-Nan: Influence of Large Amplitudes on Flexural Vibrations of a
Thin Circular Cylindrical Shell. J. Aerospace Sci., vol. 28, no. 8,
Aug. 1961, pp. 602-609.

Cumings, Benjamin E.: Some Nonlinear Vibration and Response Problems of
Cylindrical Panels and Shells. SM 62-32 (AFOSR 3123), Graduate Aeron.
labs., C.I.T., June 1962.

Evensen, David A.: Some Observations on the Nonlinear Vibration of Thin
Cylindrical Shells. ATIAA J. (Tech. Notes and Comments), vol. 1, no. 12,
Dec. 1963, pp. 2857-2858.

Hoppe, R.: Vibrationen eines Ringes in seiner Ebene. J. Reine Angewante
Math., Bd. IXXIII, Heft 2, 1871, pp. 158-170.

Rayleigh (Lord): The Theory of Sound. First Am. ed., vols. I and 11,
Dover Publ., 1945.

Philipson, L. L.: On the Role of Extension in the Flexural Vibrations of
Rings. J. Appl. Mech., vol. 23, no. 3, Sept. 1956, pp. 364-366.

Buckens, F.: Influence of the Relative Radial Thickness of a Ring on its
Natural Frequencies. J. Acoust. Soc. Am., vol. 22, no. 4, July 1950,

pp. W37-LL3,

Federhofer, Von K.: Biegungsschwingungen eines Kreisringes bei konstantem
Aussen-oder Innendrucke. Ingr.-Arch., Bd. IV, Heft 2, Apr. 1933,
pp. 110-120.

Federhofer, Von Karl: Nicht-lineare Biegungsschwingungen des Kreisringes.
Ingr.-Arch., Bd. XXVIII, 1959, pp. 53-58.

Shkenyev, Yu. S.: Nelineyniye Kolebaniya Krugovogo Kol'tsa. Inzh. Sb.,
vol. XXVIII, 1960, pp. 82-86.

Goodier, J. N.; and McIvor, I. K.: Dynamic Stability and Non-Iinear
Oscillations of Cylindrical Shells (Plane Strain) Subjected to Impulsive
Pressure. Tech. Rept. No. 132 (Contract Nonr 255(29)), Div. Eng. Mech.,
Stanford Univ., June 1962.

Kaiser, Elmer R.: Acoustical Vibrations of Rings. J. Acoust. Soc. Am.,
vol. 25, no. 4, July 1953, pp. 617-623.



1k,

15.

16.

17.

18.

19.

20.

21.

22.

23.

2k,

2.

26.

27.

Lang, T. E.: Vibration of Thin Circular Rings. Pt. 1. Solutions for Modal
Characteristics and Forced Excitation. Tech. Rept. No. 32-261 (Contract
No. NAS 7-100), Jet Propulsion Lab., C.I.T., July 1, 1962.

Evensen, David Authur: Non-Linear Flexural Vibrations of Thin Circular
Rings. Ph. D. Thesis, California Inst. Technol., 196k.

Mechtly, E. A.: The International System of Units - Physical Constants and
Conversion Factors. NASA SP-7012, 196k.

Oplinger, Donald W.: Frequency Response of a Nonlinear Stretched String.
J. Acoust. Soc. Am., vol. 32, no. 12, Dec. 1960, pp. 1529-1538.

Woinowsky-Krieger, S.: The Effect of an Axisl Force on the Vibration of
Hinged Bars. J. Appl. Mech., vol. 17, no. 1, Mar. 1950, pp. 35-36.

Chu, Hu-Nan; and Herrmann, George: Influence of Large Amplitudes on Free
Flexural Vibrations of Rectangular Elastic Plates. J. Appl. Mech.,
vol. 23, no. 4%, Dec. 1956, pp. 532-540.

Singer, Josef: On the Equivalence of the Galerkin and Rayleigh-Ritz
Methods. J. Roy. Aeron. Soc., vol. 66, no. 621, Sept. 1962, p. 592.

McLachlan, N. W.: Ordinary Non-Linear Differential Equations in Engi-
neering and Physical Sciences. Second ed., The Clarendon Press (Oxford),

1956.

Hutton, R. E.: An Investigation of Resonant, Nonlinear, Nonplanar Free
Surface Oscillations of a Fluid. NASA TN D-1870, 1963.

Miles, John W.: Stability of Forced Oscillations of a Spherical Pendulum.
Quart. Appl. Math., vol. XX, no. 1, Apr. 1962, pp. 21-32.

Herrmann, G.; and Armenakas, A. E.: Dynamic Behavior of Cylindrical Shells
Under Initial Stress. AFOSR TN-60-425, U.S. Air Force, Apr. 1960.
(Available from ASTIA as AD No. 237 901.)

Morley, L. S. D.: An Improvement on Donnell's Approximation for Thin-
Walled Circular Cylinders. Quart. J. Mech. Appl. Math., vol. XII, pt. 1,
1959, pp.,89-99.

Stoker, J. J.: Nonlinear Vibrations in Mechanical and Electrical Systems.
Interscience Publ. Inc., c.1950.

Tobias, S. A.: Free Undamped Non-Linear Vibrations of Imperfect Circular
Disks. Proc. Inst. of Mech. Engrs., vol. 171, no. 22, 1957, pp. 691-715.

57



58

TABLE I.- EXPERIMENTAL RESPONSE SURVEY

Driving

'Mode. frequency, Type of response
vibrating cps or Hz

n=2 T.1
n = Z 17.5
n = 33.0
n=>5 53.2 Resonance at driving
n==6 78.0 frequency
n=7 107.4
n =8 139.2
n=29 179.6
n = 10 222.8
n=3 8.8 Ultraharmonic; order 1/2
n==u4 11.1 Ultrasharmonic; order 1/3
n=7"97 213.0 Subharmonic; order 2
n =25 69.8 Ultraharmonic; order 1/2
n =28 47.6 Ultrsharmonic; order 1/3
n=9 92.3 Ultreharmonic; order 1/2
n =3 } 6.7 n =3 at 26.7 cps (Hz)
n=>5 ’ { n =5 at 53.4 cps (Hz)
n =154 } 39.0 { n =4 at 39.0 cps (Hz)
n==6 n=6 at 78.0 cps (Hz)
n==4 8 n =4 at 35.8 cps (Hz)
n="7 f e { n =7 at 107.4 cps (Hz)
n=1.u } 35.3 { n=».4 at 3.3 cps (Hz)
n=28 n =8 at 141.2 cps (Hz)
n=>5 60.5 { n=5 at 60.5 cps (Hz)
n=9 } n=9 at 181.5 cps (Hz)

NASA-Langley, 1965 L—)+216
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